The Convexity and Design of Composite Multiclass Losses
نویسندگان
چکیده
We consider composite loss functions for multiclass prediction comprising a proper (i.e., Fisherconsistent) loss over probability distributions and an inverse link function. We establish conditions for their (strong) convexity and explore the implications. We also show how the separation of concerns afforded by using this composite representation allows for the design of families of losses with the same Bayes risk.
منابع مشابه
Composite Multiclass Losses
We consider loss functions for multiclass prediction problems. We show when a multiclass loss can be expressed as a “proper composite loss”, which is the composition of a proper loss and a link function. We extend existing results for binary losses to multiclass losses. We subsume results on “classification calibration” by relating it to properness. We determine the stationarity condition, Breg...
متن کاملComposite Binary Losses
We study losses for binary classification and class probability estimation and extend the understanding of them from margin losses to general composite losses which are the composition of a proper loss with a link function. We characterise when margin losses can be proper composite losses, explicitly show how to determine a symmetric loss in full from half of one of its partial losses, introduc...
متن کاملConvexity of Proper Composite Binary Losses
A composite loss assigns a penalty to a realvalued prediction by associating the prediction with a probability via a link function then applying a class probability estimation (CPE) loss. If the risk for a composite loss is always minimised by predicting the value associated with the true class probability the composite loss is proper. We provide a novel, explicit and complete characterisation ...
متن کاملClassification Calibration Dimension for General Multiclass Losses
We study consistency properties of surrogate loss functions for general multiclass classification problems, defined by a general loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient con...
متن کاملConvex Calibration Dimension for Multiclass Loss Matrices
We study consistency properties of surrogate loss functions for general multiclass learning problems, defined by a general multiclass loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.4663 شماره
صفحات -
تاریخ انتشار 2012